Hexagonal Architecture

( Ports & Adapters)
The 2023 version ©

'v\s ww
,jj slew gg ‘*(\/M V‘Aﬂﬁﬁ y

+ 4 jgg’ Waw;/
5;;/1& Weakher éw%w
- Wonilor /| ———= it mewwe
it
e N e
R AT gl Y U e
#;ﬁf;»w

Alistair Cockburn

©Alistair Cockburn 2023 (\)



Outline

What’s the point?

Chip component analogy

Development sequence

Hexagonal Example, w code (Ruby)
Required interfaces, w code (Java)
Hexagonal example, w code (Java)

Juan’s Blue Zone example (Java)

Where do | put all the declarations & code?
The configurator

O Costs and Benefits

SOPNO O A ®P

©Alistair Cockburn 2023 (\)



What is the point?

Create your application to work without either a Ul or a database

so you can run automated regression-tests against it,
work when the database becomes unavailable,

upgrade to new technology, and
link applications together.

©Alistair Cockburn 2023 (\)



Benefits

. You get to decide the app’s driven actors at initialization, over a
period of years as technologies shift, or in real time.

. You get to replace production connections with test harnesses, and
back again, without changing the source code.

. You get to avoid having to change the source code and then rebuild
the system every time you make these shifts.

. You can prevent leaks of business logic into the Ul or data services,
and vice versa, prevent leaks of Ul or data service logic into the
business logic.

©Alistair Cockburn 2023

@



Costs

. You must add an instance var to hold each driven actor, or get it every
time.

. You must add a constructor parameter or a setter function for each
driven actor, or a call to the configurator to get it.

. You must design and add a configurator.
(Type-checked languages)You must declare the “required”interfaces.

(Type-checked languages) You must add folder structure for the port
declarations.

©Alistair Cockburn 2023 (\)



Why? When would it have been worth it?

Network tracing program

Network tracing

GUI - system

ow! ®

Invoicing system

Invoicing o SQL

GUI - system database

ow! ® ow! ®
©Alistair Cockburn 2023 (\.)



The app is a “component”

Application

©Alistair Cockburn 2023 Q



The app is a component, with ports

Driving ports /

/ For getting other data
/ or
/ For controlling something

©Alistair Cockburn 2023

@



Hooking up the component for testing

Test
harness

For using

/

For
admin’ing

Application

For configuring

For notifying

O——

Mocked
receivers

For getting
data

Test
database

(P For controlling something

Mocked
devices

©Alistair Cockburn 2023

@



Hooking up the component for production

startup

GUI1

GUI 2

For
admin’ing

For

Application

configuring

actual
devices

For notifying

O——

actual
receivers

For getting
data

Production
database

(P For controlling

©Alistair Cockburn 2023

10

@



11

Mho’s weather warning system as components

Tests
weather service telemet ;
9‘” I * ry — Test/Mock receiver
w“M weather service RSS feed coll ectiFr? ' - -

Weathe% — Analog answering machines

weather service web site \formation For notifying

\ subscribers Pagers
@ O——
Other App(s) — Email

Weather
Warning

For getting
subscriber data

admin’ing

Tests SyStem Test database
) - | -
min roduction database
T | Admin GUI Production datab
HTTP access

©Alistair Cockburn 2023 (\)



Development Sequence:

tests + mocks first

#1

Tests

Mock database

#2

production driver

Production database

#3

#a

©Alistair Cockburn 2023

12

@



Tests

Simplest example: tax calculator

For calculating taxes

“taxRate(amount)” For getting tax rates
“taxOn(amount)”

“taxRate(amount)”

Mock tax rate repository

Production driver

Calculator

Production tax rate repository

©Alistair Cockburn 2023

13

@



14

Code for Tax Calculator (Ruby)

Tests > (@, Mock tax rate repository

For calculating taxes For getting tax rates
taxOn(amount)’ “taxRate(amount)” class FixedTaxRateRepository
def tax_rate(amount)
class TaxCalculator e(r){(;l °
def initialize( tax_rate_repository ) end
@tax_rate_repository = tax_rate_repository

end

def tax_on(amount)
amount * @tax_rate_repositorytax_rate(amount)
end (Note: no interface

end declarations)

tax_rate_repository = Fixed TaxRateRepository.new This is the work of the “configurator”
my_calculator = TaxCalculator.new( tax_rate repository ) (aka Composition Root)

puts my_calculatortax_rate( 100 ) This is using the system at the port

©Alistair Cockburn 2023 (\)



Detour for type-checked languages:
Provided & Required interfaces

B provides services.
A uses them.

L

A Lo B

A “requires” this interface.
B implements it.

B “implements” the interface.

—O)—

Useful for defining a public API

A —0- B |

A owns the interface definition.

O_

Useful for decoupling a component from
its receivers

©Alistair Cockburn 2023

15

@



16

The source-code dependencies

Driving ports: The app owns the interface Driven ports: The app owns the interface
Driving actor  [...___. . >O0— «Component» «Component» (o Driven actor
or adapter App API App App App required iff or adapter

(Provided i/f)

1
1
Driving actor  |----cccoo-- i OO > «Interface» «Component» — | | u S_(_?IS“} «Interface»
or adapter App provided i/f App App required i/f
b &
implements ;
' implements
«Component» '
App
Driven actor

or adapter

-

©Alistair Cockburn 2023~ @




17

What a required interface looks like in code (Java)

For getting tax rates

“taxRate(amount)”
taxCalculator © FixedTaxRateRepository
S S S S S
interface ForGettingTaxRates { | Make sure the required interface’s

double taxRate(double amount);} | definition belongs to the calculator,
not to the repository!

class TaxCalculator {

private ForGetting TaxRates taxRateRepository;

|

|

|

|

|

|

: public TaxCalculator(ForGettingTaxRates taxRateRepository) { class lee?r-rqz)l(:;;ii‘selggfg(;ﬁingTaxRates {
|
|
|
|
|
|

}

public double taxOn(double amount) {
return amount * taxRateRepository. taxRate( amount );

I
I
I
I
I
this.taxRateRepository = taxRateRepository; | public double taxRate(double amount) {
| return 0.15;}
R
I
I
I

©Alistair Cockburn 2023 (\)



Main

Code for Tax Calculator (Java)

Mock tax rate repository

For calculating taxes

For getting tax rates

18

“taxOn(amount)” “taxRate(amount)”
[ interface ForCalculatingTaxes {
double taxOn(double amount);
}
interface ForGettingTaxRates {
double taxRate(double amount);

class FixedTaxRateRepository
implements ForGettingTaxRates {

public double taxRate(double amount) {

}
}

return 0.15;

}

|

I

I

|

| class TaxCalculator implements ForCalculatingTaxes {
| private ForGettingTaxRates taxRateRepository;
|
I
I
|
I
1

public TaxCalculator(ForGetting TaxRates taxRateRepository) {

this.taxRateRepository = taxRateRepository;

}

public double taxOn(double amount) {

return amount * taxRateRepository. taxRate( amount );

}
}

class Main {
public static void main(String[] args) {

}

ForGettingTaxRates taxRateRepository = new Fixed TaxRateRepository();
TaxCalculator myCalculator = new TaxCalculator( taxRateRepository );
System.out.printin( myCalculator.taxOn( 100 ) );

the “configurator”

using the system at the port

©Alistair Cockburn 2023

@




A more complex example: Juan’s “Blue Zone”

BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

{ DRIVERS J {DRIVEN Acroas]

(Primary Actors) éSecondaw ActorsL
=2 ‘ ==
1 7\
2N Rate Provider

Car Driver (Repository)
—f BLUEZONE — <]
@ Interaction Interaction —r—
— — N
Permit Storage
7\ (Repository)
Parking Inspector
| S |
/\
g Payment System
. (Repository)
Juan Manuel Garrido de Paz:
https://github.com/jmgarridopaz/bluezone ©Alistair Cockburn 2023

19

@



Juan’s “Blue Zone” example

BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

. . 3 U
N ; .’ ———
1 7\
/ \ *\‘9 %, Rate Provider
Car Dri R [
ar Driver 30‘?0 5 0%/ (Repository)
¢ io ’4)
[ Driver Side ] 5 BLUEZONE o * [ Driven Side J
Se
Q% é. & B
3 % Ed ——
-1 For paying /\
7\ Permit Storage
Parking Inspector g (Repository)
N
Payment System
p (Repository)
Juan Manuel Garrido de Paz:
https://github.com/jmgarridopaz/bluezone ©Alistair Cockburn 2023

20

@



21

Juan’s “Blue Zone” example

BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

web ui
adapter

tests in Cucumber

Car
Driver ) (
parking

For obtaining
rates Test Double

File adapter \ i
FiLE
tests in TestNG For storing
tickets Test Double
For
Parking CLI checking . DB adapter g
Inspector adapter cars For paying DATABASE

Test Double

Wallet Adapter
WALLET

Juan Manuel Garrido de Paz: i
https://github.com/jmgarridopaz/bluezone ©Alistair Cockburn 2023 O



Ports
s
B
Adapters

Juan’s “Blue Zone” example
https://github.com/jmgarridopaz/bluezone

Driven Ports

[ ForPaying.java

[ ForObtainingRates.java
[ ForStoringTickets.java
Driving Ports

[ ForCheckingCars.java
[ ForConfiguringApp.java
0O ForParkingCars.java

Driven Adapters

M bluezone-adapter-forpaying-spy

[ bluezone-adapter-forobtainingrates-stub
[ bluezone-adapter-forstoringtickets-fake
Driving Adapters

[ bluezone-driver-forcheckingcars-test

[ bluezone-adapter-forparkingcars-webui

0 bluezone-driver-forparkingcars-test

/%%

* DRIVEN PORT

*/

public interface ForObtainingRates {
public Set<Rate> findAll();
public Rate findByName (String rateName );
public void addRate ( Rate rate );
public boolean exists ( String rateName );
public void empty();

/%%

* Driven adapter that implements "forobtainingrates" port

with a stub test double.

*/

@Adapter(name="test-double")

public class StubRateProviderAdapter implements ForObtainingRates {

private Set<Rate> rates;

©Alistair Cockburn 2023~ @

22

-



23

The folders: Port declarations and Adapters

Vv Hexagonal Project Structure
Driven Adapters

Driving Adapters Port declaration folders Adapter folders

in the app outside the app

v Tax Calculator App

Driven Ports

Driving Ports W Driven Ports

0 bluezone-adapter-forpaying-spy
TaxCalculator [3 ForPaying.java

P bluezone-adapter-forobtainingrates-stub
[ ForObtainingRates.java

bluezone-adapter-forstoringtickets-fake
[ ForStoringTickets.java

" Driving Ports
bluezone-driver-forcheckingcars-test

[ ForCheckingCars.java

o ) bluezone-adapter-forparkingcars-webui
D ForConfiguringApp.java

bluezone-driver-forparkingcars-test
D ForParkingCars.java

©Alistair Cockburn 2023 @



24

How do we design the configurator?

configurator
configurator

\
\ =7
\ =z Vz

\ =z

\ & )

£X — mock repo A

H App — (0

— repo B

— repo C

©Alistair Cockburn 2023 (\)



25

Configurator design #1: setter method
(Dependency Injection)

set
tax rate

repository

Main or
test case ' O

get
tax

tax
calculator

o

get

test
tax rate repository

tax rate

production
tax rate repository

©Alistair Cockburn 2023 (\)



26

Configurator design #2: repository broker

set
tax rate

repository
broker

main or
test case

_’O_

get
tax

(Dependency Lookup)
get te_st
tax rate rate repository broker
repository
—CO— production
tax rate repository broker
calculator

_©_

get

test
tax rate repository

tax rate

repository for country A

repository for country B

©Alistair Cockburn 2023 (\.)



27

Benefits

. You get to set the app’s driven actors during execution --
at initialization, over a period of years as technologies shift,
or in real time.

. You get to replace production connections with test harnesses, and
back again, without changing the source code.

. You get to avoid having to change the source code and then rebuild
the system every time you make these shifts.

. You can prevent leaks of business logic into the Ul or data services,
and vice versa, prevent leaks of Ul or data service logic into the
business logic.

©Alistair Cockburn 2023 (\)



28

Costs

. You must add an instance var to hold each driven actor, or get it every
time.

. You must add a constructor parameter or a setter function for each
driven actor, or a call to the configurator to get it.

. You must design and add a configurator.
(Type-checked languages)You must declare the “required”interfaces.

(Type-checked languages) You must add folder structure for the port
declarations.

©Alistair Cockburn 2023 (\)



29

Ports & Adapters Pattern
(aka Hexagonal Architecture)

Create your application to work without either a Ul or a database
so you can run automated regression-tests against the application,
work when the database becomes unavailable,

upgrade to new technology, and
link applications together.

Tests

weather service

m Test/Mock receiver

For
collecting

weather service RSS

For B Analog answering
not|fy|ng nmaachinac
subscribers - Pagers

weather service web site

With many thanks to For getting
. subscriber
Juan Mgnuel Garrido dg Paz Tests data Test database
for continual close reading, () |
exactness, and code T _Admin Production database
HTTP access

©Alistair Cockburn 2023 (\.)



