
©Alistair Cockburn 2023

Alistair Cockburn

Hexagonal Architecture
(Ports & Adapters)

The 2023 version J

©Alistair Cockburn 2023

2

Outline

1. What’s the point?
2. Chip component analogy
3. Development sequence
4. Hexagonal Example, w code (Ruby)
5. Required interfaces, w code (Java)
6. Hexagonal example, w code (Java)
7. Juan’s Blue Zone example (Java)
8. Where do I put all the declarations & code?
9. The configurator
10. Costs and Benefits

©Alistair Cockburn 2023

3

What is the point?

Create your application to work without either a UI or a database
so you can run automated regression-tests against it,
work when the database becomes unavailable,
upgrade to new technology, and
link applications together.

©Alistair Cockburn 2023

4

Benefits

1. You get to decide the app’s driven actors at initialization, over a
period of years as technologies shift, or in real time.

2. You get to replace production connections with test harnesses, and
back again, without changing the source code.

3. You get to avoid having to change the source code and then rebuild
the system every time you make these shifts.

4. You can prevent leaks of business logic into the UI or data services,
and vice versa, prevent leaks of UI or data service logic into the
business logic.

©Alistair Cockburn 2023

5

Costs

1. You must add an instance var to hold each driven actor, or get it every
time.

2. You must add a constructor parameter or a setter function for each
driven actor, or a call to the configurator to get it.

3. You must design and add a configurator.

4. (Type-checked languages) You must declare the “required” interfaces.

5. (Type-checked languages) You must add folder structure for the port
declarations.

©Alistair Cockburn 2023

6

Why? When would it have been worth it?

GUI
Network tracing

system

Network tracing program

ow! L

GUI
Invoicing
system

SQL
database

Invoicing system

ow! L ow! L

ow! L

ow! L

©Alistair Cockburn 2023

7

The app is a “component”

Application

©Alistair Cockburn 2023

8

The app is a component, with ports

Application

For configuring

For using

For admin

For notifying

For getting data

For getting other data
or

For controlling something

Driving ports

Driven ports

We name the ports for their purpose:

“For_doing_something”.

Each port can have multiple function

calls.

©Alistair Cockburn 2023

9

Hooking up the component for testing

Application

For configuring

For using

For
admin’ing

For notifying

For getting
data

For controlling something

Test
harness

Mocked
receivers

Test
database

Mocked
devices

©Alistair Cockburn 2023

10

Hooking up the component for production

For
configuring

Application

For
using

For
admin’ing

For notifying

For getting
data

For controlling

startup

actual
receivers

Production
database

actual
devices

GUI 1

GUI 2

©Alistair Cockburn 2023

11

Mho’s weather warning system as components

Weather
Warning
System

For
collecting

weather
information

For
admin’ing

For notifying
subscribers

For getting
subscriber data

Tests

Tests

weather service telemetry

weather service RSS feed

Admin GUI

HTTP access

Other App(s)

Test/Mock receiver

Analog answering machines

Pagers

Email

Test database

Production database

weather service web site

©Alistair Cockburn 2023

12

Development Sequence:
tests + mocks first

App

For driving
the app For getting

data

Tests

production driver

Mock database

Production database

#1

#2

#3

#4

©Alistair Cockburn 2023

13

Simplest example: tax calculator

Tax
Calculator

For calculating taxes
For getting tax ratesTests

Production driver

Mock tax rate repository

Production tax rate repository

“taxRate(amount)”
“taxOn(amount)” “taxRate(amount)”

©Alistair Cockburn 2023

14

Code for Tax Calculator (Ruby)

(Note: no interface
declarations)

class TaxCalculator
 def initialize(tax_rate_repository)
 @tax_rate_repository = tax_rate_repository
 end
 def tax_on(amount)
 amount * @tax_rate_repository.tax_rate(amount)
 end
end

class FixedTaxRateRepository
 def tax_rate(amount)
 0.15
 end
end

tax_rate_repository = FixedTaxRateRepository.new
my_calculator = TaxCalculator.new(tax_rate_repository)
puts my_calculator.tax_rate(100)

Tax
Calculator

For calculating taxes For getting tax rates
Tests Mock tax rate repository

“taxOn(amount)” “taxRate(amount)”

This is the work of the “configurator”
(aka Composition Root)

This is using the system at the port

©Alistair Cockburn 2023

15

Detour for type-checked languages:
Provided & Required interfaces

A B

B provides services.
A uses them.

Useful for defining a public API

A B

A “requires” this interface.
B implements it.

Useful for decoupling a component from
its receivers

B “implements” the interface. A owns the interface definition.

©Alistair Cockburn 2023

16

The source-code dependencies

Driven ports: The app owns the interface

Driven actor
or adapterApp

Driven actor
or adapter

App

App required i/f

App required i/f

Driving ports: The app owns the interface

App API
(Provided i/f)

App

App

App provided i/f

Driving actor
or adapter

Driving actor
or adapter

Driven actor
or adapter

Driven actor
or adapter

©Alistair Cockburn 2023

17

What a required interface looks like in code (Java)

taxCalculator FixedTaxRateRepository

Make sure the required interface’s
definition belongs to the calculator,
not to the repository!

class TaxCalculator {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15; }
 }

interface ForGettingTaxRates {
 double taxRate(double amount); }

For getting tax rates
“taxRate(amount)”

©Alistair Cockburn 2023

18

Code for Tax Calculator (Java)

Tax
Calculator

For calculating taxes For getting tax rates
Main Mock tax rate repository

“taxOn(amount)” “taxRate(amount)”

interface ForCalculatingTaxes {
 double taxOn(double amount);
 }
 interface ForGettingTaxRates {
 double taxRate(double amount);
 }
class TaxCalculator implements ForCalculatingTaxes {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {
 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new FixedTaxRateRepository();
 TaxCalculator myCalculator = new TaxCalculator(taxRateRepository);
 System.out.println(myCalculator.taxOn(100));
 }

the “configurator”

using the system at the port

©Alistair Cockburn 2023

19

A more complex example: Juan’s “Blue Zone”
BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

https://github.com/jmgarridopaz/bluezone
Juan Manuel Garrido de Paz:

©Alistair Cockburn 2023

20

Juan’s “Blue Zone” example
BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

https://github.com/jmgarridopaz/bluezone
Juan Manuel Garrido de Paz:

©Alistair Cockburn 2023

21

Juan’s “Blue Zone” example
BlueZone allows car drivers to pay remotely for parking cars at zones in a city,
instead of paying with coins using parking meters

Blue
Zone

For configuring
BlueZone

For
parking
cars For obtaining

rates

For storing
tickets Test Double

tests in TestNG

For
checking

cars For paying

web ui
adapter

tests in Cucumber

Car
Driver

CLI
adapter

Parking
Inspector

Test Double

File adapter

DB adapter

Wallet Adapter

Test Double

https://github.com/jmgarridopaz/bluezone
Juan Manuel Garrido de Paz:

©Alistair Cockburn 2023

22

Juan’s “Blue Zone” example
https://github.com/jmgarridopaz/bluezonePorts

Adapters

©Alistair Cockburn 2023

23

The folders: Port declarations and Adapters

Port declaration folders
in the app

Adapter folders
outside the app

©Alistair Cockburn 2023

24

How do we design the configurator?

App

configurator
configurator

repo B

repo C

mock repo A

©Alistair Cockburn 2023

25

Configurator design #1: setter method
(Dependency Injection)

Main or
test case

tax
calculator

production
tax rate repository

test
tax rate repository

set
tax rate

repository

get
tax rate

get
tax

©Alistair Cockburn 2023

26

Configurator design #2: repository broker
(Dependency Lookup)

main or
test case

tax
calculator

repository for country A

repository for country B

test
tax rate repository

set
tax rate

repository
broker

get
tax rate

repository

get
tax rate

get
tax

production
rate repository broker

test
rate repository broker

©Alistair Cockburn 2023

27

Benefits

1. You get to set the app’s driven actors during execution --
at initialization, over a period of years as technologies shift,
or in real time.

2. You get to replace production connections with test harnesses, and
back again, without changing the source code.

3. You get to avoid having to change the source code and then rebuild
the system every time you make these shifts.

4. You can prevent leaks of business logic into the UI or data services,
and vice versa, prevent leaks of UI or data service logic into the
business logic.

©Alistair Cockburn 2023

28

Costs

1. You must add an instance var to hold each driven actor, or get it every
time.

2. You must add a constructor parameter or a setter function for each
driven actor, or a call to the configurator to get it.

3. You must design and add a configurator.

4. (Type-checked languages) You must declare the “required” interfaces.

5. (Type-checked languages) You must add folder structure for the port
declarations.

©Alistair Cockburn 2023

29

Ports & Adapters Pattern
(aka Hexagonal Architecture)

Create your application to work without either a UI or a database
so you can run automated regression-tests against the application,
work when the database becomes unavailable,
upgrade to new technology, and
link applications together.

With many thanks to
Juan Manuel Garrido de Paz
for continual close reading,
exactness, and code.

Weather
Warning
System

For
collecting

weather
informati

on

For
admin’ing

For
notifying
subscribers

For getting
subscriber

dataTests

Tests

weather service
telemetry

weather service RSS
feed

Admin
GUI

HTTP access

Other App(s)

Test/Mock receiver

Analog answering
machines
Pagers

Email

Test database

Production database

weather service web site

